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Chapter 1

INTRODUCTION

The problem of electromagnetic transmission through apertures

in conducting planes of f inite thickness has been the object of several

investigations. This problem is important because of the need to de—

termine the effects of wall thickness on coupling through slots and

holes in waveguides and cavities. Several quasi—static solutions have

been developed , which include expanding the field in terms of the char-

acteristic functions of Laplace’s equation [1], using asymptotic ex—

pansions to solve a set of integral equations [2], and variational

methods [3,4]. These solutions are usually valid when the radius of

the circular aperture or the width of the slot is small compared to

the wavelength. The effects of wall thickness have also been measured

for some waveguide coupling problems [5], and for a long slot in a

thick screen [6,7,8].

The slit (slot of infinite length) of rectangular cross section

in a thick conducting screen is the object of most of the theoretical

investigations. The fields in the slit reg ion are usually expanded .

in terms of the parallel plate waveguide modes, while the iields in

the half space regions have various integral representations. Enforcing

continuity of the tangential field at the aperture faces, one obtains a

coupled set of integral equations. The formulation and solution of

these equations make use of a var iety of techniques , such as the use of

Webe r— Schafheitlin discontinuous integrals [9,10], Wiener—Hopf methods

1
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and generalized matrix techniques [11], Fourier integral methods [12 ,13] ,

Green ’s function methods [14,15] ,  and the equivalence principle and

moment methods [16]. Another procedure is to expand the fields in the

half space regions in terms of the characteristic functions of the

Helmholtz equation in elliptic cylinder coordinates [17,18]. A doubly
‘ 4

infinite set of linear algebraic equations is then obtained for deter—

mining the coefficients of expansion.

A slightly more general problem is treated in [19], where the

thick ground screen is an infinite slab with finite conductivity.

Analytic properties of finite Fourier transforms are used to reduce

the problem to the solution of a single variable Fredhoim integral

equation of the second kind . A slit of arbitrary cross section is

treated in [201 whereby the scattered electric field is expressed as

an integral over the electric current induced on the infinite conduc-

tors. By requiring the total tangential electric field to vanish at

a finite number of points on the conducting contours, a system of

algebraic equations is obtained which determines the electric current

at these points.

Problems of this nature are also of interest in the area of

electromagnetic compatibility. If the slit region is filled with a

conducting material , it might represent a gasket between two perfectly

conducting walls. A different analysis than the above mentioned methods

is then possible using approximations and models for the transmission

mechanism [21].

2
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This report considers the problem of a filled slit of arbi-

trary cross section in a thick conducting screen. The formulation

presented here is basically a specialization of that given in [22]

for a class of aperture coupling problems. The basis of the method

rests on the equivalence principle , as it is defined and used in

[23,241, which is used to break the problem up into three isolated

regions. This isolation is achieved by the use of equivalent elec—

tric and magnetic current sources, which radiate in unbounded space

and are constrained to give the correct fields in each region . An

operator equation is thus obtained for each region in terms of the

equivalent sources as the unknowns. These operator equations are

solved simultaneously via a Galerkin procedure [25 ,26] after Suit-

able sets of expansion functions are chosen to represent the un-

knowns. Some immediate advantages of this formulation are summar-

ized as follows:

1) The necessary equivalent sources exist on a finite

two—dimensional contour .

2) These equivalent sources radiate into unbounded ,

homogeneous space and hence their fields have a

simple retarded potential representation .

3-) The system of three simultaneous operator equations

has a unique solution at all frequencies.

4) The cross section of the slit may be an arbitrary

shape and filled with lossy material.

The operator equations are der ived in detail in Chapter 2 ,

where an argument for the uniqueness of solution is also given .

3 
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Each polarization is handled separately in Chapter s 3 and 4 . The

term transverse electric as used here means tha t the electric field

lies in the plane of the slit cross section, and transverse magnetic

means that the magnetic field lies in the plane of the slit cross

section.

Once the tangential fields over the aperture faces are
4

known , several transmission characteristics may be computed. These

are defined in Chapter 5 , where they are written in terms of a

measurement vector and as such are referred to as measured quantities.

A slit impedance and polarizability are also defined which, when the

slit width is electrically small, characterize the slit.

An alternate method of solution is presented in Chapter 6

when the slit cross section is composed of a number of rectangular

regions. These are viewed as a sequence of two—d imensional , infinitely

long, rectangular cavities, each coupled to the other by an aperture.

The method is an extension to that presented in [16], and is referred

to here as a modal solution. It has the advantage that each rectangu-

lar region may be filled with different material .

When t ~ slit cross section is rectangular , an approximate

solution is developed in Chapter 7 based on assumptions concerning

the equivalent magnetic current. This approximate solution has the

advantage of yielding a greatly simplified numerical solution, accurate

when the material filling the slit is dense. A material is said to be

dense when the intrinsic wavelength In the material is much smaller

than that of free space.

4
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I
Chapter 2

PROBLEM FORMULATION

2.1. Derivation of Operator Eciuations

The problem to be considered is shown in Fig. 1, where

electromagnetic transmission occurs through a slit of arbitrary

4 
cross section in a perfectly conducting plane of finite thick—

ness. The slit cross section is composed of the straight lines

I ’  and r3, which are the two aperture faces, and the lines r2 and

which are arbitrary in their spe~.~ification. The characteristic

dimensions of the slit cross section are shown in Fig. 1. This

problem is strictly two—dimensional in that everything is invar-

iant in the z direction. A time dependence of ej~
t is assumed

throughout.~

In the original problem, (E~+E~, H
i
+Ha) is the total field

in region a, (F1’, R
b) is the total field in region b , and (N

c 
N

C
)

is the total field in region c. The field (F1 , R~) is that which

would exist if the sources (Ji, N1’) were to radiate into unbounded ,

homogeneous space with (u, Ca) everywhere. The equivalence principle

[23,241 is used to isolate the three regions by postulating equiv ’

alent sources to support the fields in these regions.

The equivalent sources for region a consist of an electric

current sheet which exists everywhere on the plane at x = 0 and a

magnetic current sheet which exists only over the aperture face r1.
This current distribution radiates into unbounded space with (u, Ca)

5
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region a reg ion  b region c

a~
Ca) w I ~~b~

Cb) : ~~~~~ 
(11
~~~

C
~~
)

a

E1 +Ea E~ Bc BC

Fig . 1. Original problem: Slit of arbitrary cross section cut in

a conducting plane of finite thickness.
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I
everywhere and in the presence of the sources (J1’, Mi’) to give the

fields (Ni + Ea H
1 
+ 11a) to the left of the x = 0 plane and zero

field to the right. This situation is shown in Fig. 2a. The con—

dition that the tangential magnetic field is zero just to the right

of the plane at x = 0 is written as

L
ha(Ja H1) = - (2-1)

The operator gives the magnetic field of sources radiating in

unbounded space with (P q~ Cq) everywhere. The permittivity L
q 
and

permeability ~i are, in general, complex numbers. The index q stands

for a, b, or c and the øubscript t denotes the tangential component

found by the usual -fl X fl X operation. This magnetic field operator

is defined explicitly in terms of electric and magnetic current sources

by the equation [24, p. 130]

f l X L~~ (J ,M) = ±~~~J(r) 
_
~~_ J f l x J(r’) ~~~ H~

2
~

(k
qHL’t )dt ’

- x (2~ 
+ Y V •) J ~~~ ‘) H

~
2
~~

(k
q k~~~

’ I)dt ’ (2-2)
q kq c

Here the domain of the integrals, which is usually given by J and
4

ii, Is restricted to the contour C in anticipation of the fact

that, when Eq. (2—1) is enforced at r1, not all of the electric cur-

rent on the plane x = 0 contributes to the tangential magnetic field

there. The minus sign is used when the field point , r, is on the —~i

side of C(q a or c) and the plus sign is used when q=b. The elemental

7 
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Fig. 2a. Equivalen~~ for region a.
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( 
C Czero ii. , ~ £ , H

— —

field I
F
3

~~ jC

~~jC

~~~..~~~_
_ p lane  x~~d

Fig. 2b. Equiva1~n~~ for region c.

Contour 
zero

c .~~b Lb Hb field

(
~ b, Lb) (ub, cb)

-

Fig, 2c. Equivalence for region b , = ~a at F
1 and .J1’ = ~~ at r3.
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arc length Is dt’, 1 is a unit dyad , kq 
= wJii;~q 11q 

P•’i~ 7~q

is the Hankel function of second kind, order zero, and r ’ de—

termines a point on the source distribution.

The equivalent sources for region c are given by an electric

current sheet J~ which exists everywhere on the plane at x = d and a

magnetic current sheet which exists only at the aperture face r3.
This current distribution radiates into unbounded space with (u , C )

c c

everywhere to produce the field (Fe, fl’ ) to the right of the plane

at x = d and zero field to the left. This situation is shown in Fig. 2b.

The condition that the tangential magnetic field is zero just to the left

of the plane at x d is written as

Lhc (Jc M3) = 0 (2—3 )

hcwhere is obtained from Eq. (2—2).

The true solution to the problem in Fig. 1 requires that the

tangential electric and magnetic fields be continuous at the aperture

faces F
1 and F3. Hence the equivalent sources for region b consist of

1 3magnetic current sheets —M on F
1 and —M on F3 along with an electric

current ~b which exists on the contour C E r , where ~b = ~a ~~— i=l i — —

r1 and ~
b 

= ~~C on This distribution of currents on the contour C

radiates into unbounded space with (11
1’ ~ 

Cb) everywhere to produce the

f ield (Nb, Nb) inside C and zero field outside. This situation is

shown in Fig. 2c. The condition that the tangential magnetic field be

zero just outs-ide the contour C is written as

~ L
hb ( J b 

—M1’ _ 3) 0 (2—4)

9
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where Lhb 
is obtained from Eq. (2—2). Alternatively, the condition

that the total tangential electric field be zero just outside the H
contour C is written as

Leb ( J b ~~~ _~ 3) = 0 (2—5)

where the operator ~~~ gives the electric field due to sources

radiating into unbounded space with (U
q~ 

Cq) everywhere and is

defined by the equation [24, p. 130]

fl~~~~e~ (J ,~) =~~~-~-M (r) + 4ff lxM ( r’) X !H~
2) (k

q I.L_.~’I)dt ’

— 

k
q
Tlq A  ( i + - 4 V V  .~~ J j ~ ’~ ~~~~~~~~~~~~~~~ (2—6)

where the same remarks hold as those following Eq. (2—2) except that

the plus sign is used when q = a or c and the minus sign is used when

q = b .

An alternative electric field equation could also have been

written in place of Eqs. (2—1) or (2—3). This is not done, however,

because the electric currents and J~ over the infinite portions of

the planes at x = 0 and x = d contribute to the tangential electric
f ield on and r3 respectively . These electric currents do not con—

tribute to the tangential magnetic field on and r3, and hence do

not appear in Eqs. (2—1) and (2—3) when they are enforced on F
1 and

F
3 respectively. The necessary unknown equivalent sources, then,

consist of H , H , and 3 which occupy a finite domain given by the

closed two—dimensional contour C.

10
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2.2. Uniqueness of Solution

The solution to the operator equations (2—1), (2—3), and

either (2—4) or (2—5) will be unique if the sets of homogeneous

equations consisting of

Lha (? N’) = 0 (2—7)

and either (2—3) and (2—4) or (2—3) and (2—5) have only the trivial

“

I 

solution. Thus it remains to show that if the sources are removed

from the problem in Fig . 1, the fields everywhere will collapse to

zero.

Equation (2—7) states that the tangential magnetic field

equals zero just to the right of the plane at x 0 due to 3a and

radiating in unbounded space with 
~~a’ 

C
a
) everywhere. This current

distribution also creates the fields (Ea H
a) everywhere to the lef t

of the plane at x = 0. This situation is shown in Fig . 3a. Equations

(2—4) and (2—5) state that the tangential electric and magnetic fields

are zero just outside C due to ~~~~~~~~~ _~~~~~~
, ani _~

b 
radiating in unbounded

space with 
~~~ 

C
b
) everywhere. This implies that the electromagnetic

field everywhere outside C is zero while the field inside C is given by

(Eb R
b
) This situation is shown in Fig . 3b and it is noted that

either of Eqs. (2—4) or (2—5) is sufficient to produce this situation.

Equation (2—3) states that the tangential magnetic field equals zero just

to the left of the plane at x = d due to JC and radiating in unbounded

Space (vi , C )  everywhere. This current distribution also creates the

c c  .f ields (N , H ) everywhere to the right of the plane at x = d. This

situation is shown in Fig. 3c.

11
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(~~i ,c )— 

a ~~ C C

~~perf’~ct\’\\~
j C conduc tor

lane x=d
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Now the composite situation shown in Fig. 3d is considered

where the fields of Figs. 3a — 3c have been superposed . From Fig. 3a,

the tangential component of N
a 
is zero everywhere at x = 0 except on

F
1 
and from Fig. 3c, the tangential component of N

c 
is zero every—

where at x = d except on F . From Fig. 3b, the tangential component

of Nb is zero at the perfectly conducting contours F2 
and F

4
. Figures

3a and 3b indicate that there are no equivalent sources at F
1 
in Fig. 3d

and Figures 3h and 3c indicate that there are no equivalent sources at

F
3 
in Fig. 3d. The conclusion is that the tangential electric field

is zero everywhere on the boundaries of the perfect conductors in the

composite situation of Fig. 3d and also that the region outside the

perfect conductors is source free. Thus the fields in Figs. 3a—3c are

collapsed to the null field and hence the solution to Eqs. (2—1), (2—3),

and either (2—4) or (2—5) is unique.

2.3. Specification of Slit Cross Section, Basis Functions, and

Symmetric Product

The contour C which determines the slit cross section is

approximated by a number of straight line segments each of length i~C

for integers n=l 2,. .. ,N
5
—l. This is shown in Fig. 4. The integers

~~ i=l,2,3,4, or 5 are assigned to the beginning and end points of

each Fi with N1 1 so that each F . is broken up into N .÷l — N~ seg—

inents. Each segment 1~C has a transverse directed normal fi and
‘I

tangent ~ such that

13

L



node N 2~~I~~~~~~~~~~ 
node N3

F
’ F3

::::
node N4

Fig. 4. Contour C approximated by N
5—l straight line segments.

/

~~m

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(x , 
~~~

Fig. 5. Typical segments AC and A C .  R 
n is defined as a vector

from the midpoint of AC to the midpoint of A C .
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~ x f l  =
~~~ (2—8)-n -n -

It is useful to introduce the parameter t which represents the arc

length along C from the origin to any point on C. Thus the sub-

scr ipted values of t are given by

n-i
t = ~ AC . (2—9)

4 n 
i=l 

1

for n=2 ,3,..., N
5 

and t
1 

0. Two typ ical straigh t line segmen ts are

shown in Fig. 5 where the vector R is also defined .
tfl , fl

For each polar iza tion , both transverse (2) and longitud inal

(2) directed current sources are present . The transverse currents

have a charge associated with them and it is desirable, though not

necessary, that their representation be differentiable . The z directed

currents have no such requirements but sometimes become unbounded at

edges. The longitudinal expansion functions , then , should not be con-

strained to be continuous at edges. For the sake of simplicity, the

edge condition [27,28] will not be built in a—priori into the repre-

sentation of the unknown currents. With these considerations in mind ,

then , two d i f fe ren t sets of expans ion f unctions are def ined as

t — t
rn—1~~~ for t < t < t

t - t  —m-l m-1 — m
m rn-i

f (t) = (2—10)
—in - m+1 for L < t < t

t - t  —in m — m+l
m m+1

0 for t elsewhere

and

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -



I.
fl2 for t < t < t

m+l

g~(t) = (2—11)

0 for t elsewhere

for m l ,2,..., N5
—l and with t E tN l ~

Lastly , in order to carry out the method of moments procedure ,

it is necessary to define a symmetric produc t as

1
•

<A B> = J A • B dt (2—12)

C

where A and B are vector functions defined on the two dimensional con—

tour C.

2.4. Reduction of Operator Equations to Matrix Equations

The method of moments [25] is applied somewha t mechanically

to solve either one of two possible sets of simultaneous operator equa—

tions. These consist of thesets (2—1), (2—3), and (2—4) or (2—1), (2—3),

and (2—5). The two different polarizations are cons ider ed separ ately

in Chapters 3 and 4. The first step is to assume that the unknown cur-

rents can be represented by a linear combina tion of vec tor basis func-

tions defined on the two—dimensional contour C. These may be chosen f rom

the sets defined in Section 2,3. Thus the equivalent currents are

represented in general by

H
’ 

~ V
1 

(2—13)

= ~ V
3 

c~3
(t) (2—14)

= ]~ ~~(t) (2—15)
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where V1, V3, and In are unknown complex coefficients to be determined .

The functions a
1, a3

, ~ are vector basis functions defined on r1, r3,
and C respectively and will be chosen from the sets (2—10) and (2—li)

depending on the polarization considered.

The next step is to substitute Eqs. (2—13) — (2—15) into the

operator equations and “test” each equation on that portion of the con—

tour C over which it is valid. This is done by taking the symmetric

:;- ‘ 
product of the operator equation with “testing” functions defined on the

contour C. It is desirable to choose testing functions which are in the

range of the operator . The operator equations have been written in such

a way as to allow the use of the basis functions for the testing procedure.

This is computationally convenient in that several matrices become sym-

metric. Thus Eq. (2—1) is tested with a
1 

at F
1
, Eq. (2—3) is tested with

-~3m 
at F3, and Eqs. (2—4) and (2—5) are tested all along C with ~~~~~. This

procedure results in two possible sets of simultaneous equations which are

written in matrix form as

[va] [ 0 1 [U l]1 ~l Ti

[0] [yc] [u~1I ~~~~ = (2—16)

or 

[yhl ] [~h3] [T~~j

[ya] [ 0 ] [U1]

[ 0 ] [yc] [U3] = (2—17)

[~
el
] [y

e3 ] [Te] fl 0t

The matrix 1 0 1 stands for a matrix of zeros and stands for a column

vector of zeros. As shown earlier , either (2—16) or (2—17) provide a

17
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unique solution to the original problem . The matrix elements are given

by the general formulas:

= - k~~ <
~lm

’ Lha (O , 
~ ln~

> (2-18)

~rnn 
= - k~~0 

<a3 ,  L~~ (O a3~
)> (2-19)

= — <a , fl x ~ > (2—20)mn —lm — —in

F = — <a , fl >c ~ > (2—21)mu 2 —3m — —n

yhl 
= - k~~ <~~~~ , fl x L~~ (O 

~ in~
> (2-22)

= — k~~ <~~~~ , fl x L~~(O a ) >  ( 2 - 23 )

T
h 

= - k <~ , x L~~ (~ 0)> ( 2 -2 4 )mu o — —

= — k
0 

<~~~~ , L
eb (O 

~ ln~
> (2-25)

~e3 = - k <~~ , Leb (O a )> (2-26)mn o —in —t — —3n

k
= — ~~~~~ <~~ , L

&
~(~ , 0)> (2—27)mn 

~ 
m —t ‘—n —

The linearity of the operators ~~~ and ~~~ has been used in the above .

Scaling has also been done with k , the wavenumber of free space , and

the impedance of free space , so that the computed matrix quantities

are dimensionless. The minus signs are kept in (2—18)— (2—27) so that

18 
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the Y matrices may be identified as the usual admittance matrices

obtained in the network analogue. The non—zero elements of the

excitation vector are given by

I~ = kn <
~ lm ’ li~> (2—28)

If Eq. (2—16) is partitioned and the vector fl0t is elimi—

nated , one obtains

[~
a 
- Ul [Th]

_lyhl ] [ Ul [Th]~~Y
h3] ~l

= (2— 29)

[_ ~~~~~~~~~~~~ [y
C 

— u3 [T~’]
1Y~~] ~3

assuming tha t the inverse [Th } l 
exists. A similar set of equations

may be obtained from Eq. (2—17) under the condition that [T
e

l
_i 

exists.

These inverse operators do not exist at all frequencies, however, since

[Th] and [Tel arise from the magnetic and electric field formulation of

scattering by a closed perfectly conducting contour . These operators

become ill—behaved at certain resonant frequencies. Equation (2—29)

and its coun terpar t, obtained by partitioning Eq. (2—17), do no t have

a unique solution at all frequencies. They do , however , have the con-

venient network coupling representation as shown in Fig. 6.

19
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Chapter 3

TRANSVERSE ELECTRIC (TE) CASE

3.1. Expansion of the Equivalent Currents

For the TE polarization , there is only a z component of magnetic

field and transverse components of electric field . The equivalent mag—

netic currents are z directed and satisfy no boundary conditions on F
1

V and F
3
. The equivalent electric currents are transverse directed and are

continuous all along the contour C. With this in mind , the functions of

Eq. (2—il) are chosen for and a3 of (2—13) and (2—14) and the func-

tions of Eq. (2—10) are chosen f or ~ of (2— 15). The unknown currents are

then expanded as

N
2 
-l

H
1 

= 

n~ l 
~~ ~~~ (t )  (3—1)

N
4
-l

= ~ V
3 

~~~(t) (3—2)
n=N

3
and

N
5
-l

I f (t) (3—3)
— n— n

The formulas f or the matrix elements of (2—16) and (2—17) may now be

obtained from Eqs. (2—18) — (2—28). They are given as follows where

the ranges of the ind ices m and n are specified :

1 < m < N —1
= — k~~ <~~~ L

ha (O •g~
)> 

— — 2 
(3—4)

1<  n < N
2
-1

N < m < N - l
= — kn  

~~~~~ 
L~~ (O g~~

> — — 4 (3 5)
N
3 

< n < N
4
-l
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‘1

k l < m < N - ] .
U
1 

= — —s- <g , fl x f > 
— — 2 

(3—6)mn 2 —m — —in 
l < n < N

5
-].

k N < m < N _ i
u3 — — ~~<g~ , fi x f >  (3—7)inn 2 - 

— —n 
l < n < N

5
-l

hi hb 1< m < N
5
—l

~mn 
= — k~~ <f , f~ x L (0, ~~

)> 
- 

(3—8)
i~~~ n < N

2
-i

h 1 < m < N - l
y = — k n <f , fl x Lhb (O , g )> 

— — 5 
(3-9)Tflfl 0 0  —m — — — 

N < n < N _ 1
— 4

h h l < m < N - l
T = - k <f , fl X L  b (f , 0)> 

— — 

(3-10)mu 0 —in — — —in — 

1 < n < N
5
-l

1 < m < N — 1
= - k <f , L~~(o zn)> 

1 < n < N~~ 1 
(3-11)

1 < m < N —l
= - k <f Leb (O 

~~
)> 

N
3

< n N
4
-l 

(3-12)

k 1< m < N - ] .
T
e 

= — <f , L~~ (f , 0)> 
— — 

(3—13)inn n0 —in -—t —n — 

l < n < N
5
_1

The non—zero elements of the excitation vector are given by

I~ = k~~ <~~~~ , H 1> 1 < m < N
2
—i (3—14)

22 
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3.2. Formulas for TE Matrix Elements

Equations (3—4) — (3—13) define the elements of the matrices in

Eqs. (2—16) and (2—1 7). Explicit formulas will be derived here for

these symmetric products using the definitions of the operators given

by Eqs. (2—2) and (2—6) and the expansion functions (2—10) and (2—11).

Equations (3—4) and (3—5) may be computed by examining the inner pro—
4

duct

P
1 

= — k n  <~~~ Lha (O 
~g~

)>

tm+l t +i
= - 

k n k  

J (t) •~~ x f~ X 
J~~~

(t~)H (2) (k Ir (t) -r~~ t)~~)dt’d t (3-15)

whe-re r (t) denotes a vector from the origin to a point on AC for
1fl

2 2
m’=1,2,...,N5

—1 . Using the variables u = —
~
-
~ - - t  , u = —~~- t  , and

defined in Fig. 5, one may write Eq. (3—15) as

1 1kn  y y  r yo o in n F I H~
2
~ ( I — ~ uE — 

_
~!1 u ’~ + k R I )du’du4 k ~~ 4 j j o 2 —in 2 —n a—in ,na a  

—1 —l

= if m~~~n (3-16)

k~~ 
,~ 1

~ ~
(
a
r
~a ~~ 

[a (~~ (u+l)) +a (—i (l— u))]du
ifm n

where ‘y’ = kA C , 1n 
= kA C , and the function a is defined by

z

a( z) = f H~
2
~~(v)dv (3—17)

0

This function may be computed using Struve functions [29—11.1.7]. The

integrals in (3—16) may be approximated readily by Gaussian quadrature

23
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formulae as outlined in the Appendix. Equation (3-5) is given by an

identical result where subscript c replaces a.

Equations (3—6) and (3—7) are straightforward and one may easily

obtain

k
= — -—2 <g , X f4 2 2 m —  -n

I kA C
L 0 In
i 4 

f o rm = n — l o r m = n
= IS (3—18)

1 o for in otherwise

Equations (3—8) and (3—9) are similar to (3—15) as can be seen

- from the following symmetric product :

t t

= 
~~~~~ 

[~!:1 ~:1 :~

_

_
t

~~~
1 
H~
2
~~(~~~Ir 1

(t) - r(t ’)I)dt ’dt

tln+l t
n+l

+ 

~n 
~~~~~~~~ 

H
~
2
~(~~ I r (t) - r (t t)I)dt ’dt}(3-19)

Using an appropriate change of variables in each integral and y = k
b

AC ,

one may write

P
3 

= 

~~

° (S
1 

+ S
2
) (3-20)

where 
~l 

and S2 are g iven by

24
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~~
Ym
~~:n 

~l 

~ 

(~ + 1) H~
2) ( F ~-1 u - u’~~ + ~~~~~1,~~I)du

’du

) if m-l~~~ n

~1 
= 

(3-21)

f (~ + ~)[a (~~ (u+l)) +a  4
—1 

- 
if m — l = n

4

1 1

~~~~l6 f J (~~ + ~) H~
2
~(I~ u - 

~~ u ’~~ + k~~~,~~I)du ’du

s2 = 
~ if i n # n

1 1 (3—22)

(-f- (u+l)) +a( -~1 (l-u))]du 

if in = n

For Eq. (3—10), the magnetic field due to a transverse directed

electric current is needed and using (2—2) with M = 0, one obtains

P = — k  <f , f l x j )~~(~ , 0)>

k 1 

— —

= - ---
~~ I f (t) •f(t)dt2 j —rn

t
rn-i

t tui+l n+l

+ 

~~~~ 

f (t) • fiX f (t ’) xv H
~
2
~~

(k
b
)r_r ’F)d C ’dt (3-23)

where r is a vector from the origin to a point on AC U AC and r’— rn-i in —

is a vector fr om the or igin to a poin t on ~C U AC . The aboven—i n

25

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~ — - — ~~~~~~~~~~~~~~~~~~~~~ ~~- - -



- -~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~
- -  

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
-

V integral is broken up into four parts and the symmetric product is

written as

P
4 

= ~~ [S
4(m—l ,n—1 ,i,l 

) + S
4
(m-l,n,1,—l)

- 

+ S4
(rn ,n—l ,—1,l) + S

4(m,n,-l,-l)] (3-24)

-‘ The func tion S4 is defined by

1

~~~~r n n  
~~~~~~~ (~ ~ + ~)(q ~ + ~) ~(m,n)du’du if m~n

S4 (m ,n ,p , q )  = (3-25)

if m n

where
~~

~(rn ,n) = 
-in,n H~

2
~ (I~ 1 (3-26) —

F R I —rn,n
—Tn, n

and

I I
= k R + —~~ u~ 

— —
~~~ u ’~ (3-27)—in, n b—in , n 2 —m 2 —in

A similar transformation of variables as was done for Eq. (3—19) has

been used as well as the identity

—k (r—r ’)
V H 2

~
(k
b I r—r ’I) = 

b H
1
2 (kb l r_r ’I ) (3—28)

I L-! I
Equations (3—il) and (3—12) are computed using the electric

field operator defined in Eq. (2—6), from which one obtains
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P = — k <f , L
eb (O ) >5 o —in —t —‘ -~n

k trn+l

4 

= — f ( t)  f i x g~~(t ) d t

k t~~1
+ 

~~~~

- J f ( t) .~~~ x J fix~~~(t ’) X V  H
~
2
~
(k
b I r_r ’!)dt ’dt

tm_i t 
(3—29)

where r is a vector from the origin to a point on AC U AC and r ’— rn-i m —

is a vector from the origin to a point on A c . Using the same trans-

formation as for Eq. (3—19), one obtains

P
5 

= 
~~~ (S1 + S

2) (3-30)

where S
1 
and S

2 are defined by

(
if rn—l n

S
1 

= (3-31)

~~ 
1m-11n _( (~ + ~) 

~(m-l,n)du ’du if rn-i ~ n

1 1 ~I — --a---
S~ 

= (3—32)
1 1

L ~~~~ J J (~~ + ~) 
~(m ,n)du’du if m

and

-- •-- —- - -

~

—-

~

- -



_ -

- - 
- 

-.

A An R
t~(m ,n) = ~n ~~~~~~~ H~

2
~ (~~ I) (3—33)

F R I—in, a

where R is defined in Eq. (3—27).
—in, n

Finally, to obtain Eq. (3—13), one must compute the following

symmetric product :

k
= — 2. <~ , L

&
~(f , 0)>6 n —in —t —in —

k l c fl m+l n+i
= 

__
~ _-k f f (t ).fix fix (1 + —~- V V  .) f f(t ’)H

~
2
~

(k
b
jr_ r ’I ) dt ’dt

rn-i n-i 
(3 34)

where r is a vector from the origin to a point on AC u AC and r ’ is a
— rn-i in —

vector from the origin to a point on AC
1 

ii A C .  The technique of inte-

gration by parts is applied twice to the term containing the V V• operation

and the result is given by:

k k ~ 
t~~1 ~~~ df ( t )  df (t ’)

• ~
‘
6 

= 
4n0 

b J J [f (t) •f(t ’) — 

~t ~ t ’ ]H
~
2
~
’ (k

b j r_r ’j)dt ’dt

rn—i n—i (3 35)

This integral is broken up into four parts and after similar trans-

formations as used in (3—19), one obtains

k n
P
6 

= 

~~~~~~~ 
{S
6
(rn—i , n—l ,i,l) + S6(m—i, n , 1, —1)

+ S6
(rn, n—i , —1, 1) + S

6(m, n
, —1 , —1)) (3—36)

where the function S
6 

is defined by
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- 

- -

~~~~~~~

I
~~~~ a I I [(~~~ +~~)(~~— + ~~ ) £ •~~~ ~~~~~~~~~16 J J 2 2 2 2 —in —in I Y

—l -l in n

I I
• H ( ~—~ u 

- a u ’~ + k.R j)du ’duo 2 —in 2 —a D—iu,n

ifm ~~~n

S6
(m,n,p,q) =

4 ~~ f { [ (j~ + ~) (~~ + ~) - 2~ [a (~~

+ a (—
~~~ 
(1—u))] + q(~~ + ~~

-)[(
~~

- —-~ - ~~~~ • • - • - . . . . - L • ‘i. . .-‘- . 2. •

(2) ’
~
’ 

1 (2)~~H
1 (—i (1—u)) — (-

~~
- + ~)H1 (-f(l+u))])du

if m = n (3—37)

In the above formula for S6, the identity (3—17) was used as well as

[29, 11.3.20 and 11.3.241

J uH~~~(u)du = z H~
2
~ (z) - (3-38)

3.3. Formulas for TE Excitation Vector

The elements of the non—zero excitation vector are given by Eq. (3—14).

The incident magnetic field is z directed and is adjusted so that the inci-

dent electric field is equal to unity and has zero phase at the center of

aperture face F
1 
with respect to the coordinate system in Fig . 4. Plane

wave and line source excitations are considered separately. For plane

wave excitation , the incident magnetic field is given by
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i i •••jk~ [x cos q~i — (y — —~)sin ~
‘]

= — e  (3—39)z na

where the angle of incidence is measured from the negative x axis.

Substitution of this into Eq. (3—14) yields

AC w . k A C
m a • 1 . a m . iri k jk (t + —~~— — —~-)sin q sin( 

2 
sin 

~ )-= k AC ~ e a in _______________ (3—40)m a m~~~k kA Ca a  a m - 1( sin~~ )2

If a magnetic line source of strength K1 volts is placed at the

coordin~~e~ (x ,y ) i n r~gion a then the incident magnetic field at

the point (x,y) is given by

= 

~~~~~ 
- ~~)

2 
+ (y - 

(3-41)

H~
2)
(kJ x

2 
+ ~~

a 
- )2)

where K1 has been adjusted to

K
1 

= — 
4j (3—42)

k H ~
2
~ (k Jx

2 
+ (

a 
- y ) 2

)

Substitution of Eq. (3—41) into (3—14) yields

I AC AC
k f l k A C  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i . 0 0  a m  I o a S 2 m 2 5I = j  I 

_ _ _ _ _ _ _ _  

—

m k~~ 2 ja a 
-l 

H~
2)
(kJx

2 
+ - )2)
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Chapter 4

TRANSVERSE MAGNETIC (TM) CASE

4.1. Expansion of the Equivalent Currents

For the TM polarization, there is only a z component of electric

field and transverse components of magnetic field. The equivalent mag—

netic currents are transverse directed and must satisfy the boundary

condition that they are zero at the ends of 1’~ and F
3
. The equivalent

electric currents ~re ~~d~r~çted an~ ~~t~sfy eio-bo’m~iarj cendi~~orLs~~n

the contour C. In fact , it is expected that ~b becomes unbounded at

the ends of and when region b is lossless since it is the actual

electric current induced on these surfaces in the original problem.

With this in mind , the functions of Eq. (2—10) are chosen for the and

a
3 of (2—13) and (2—14) while the functions of Eq. (2—il) are chosen for

~ of (2—15). The unknown currents are thus expanded as

N
2
—1

= ~ V1 f (t) (4—1)
— n—nn=2

N
4
—1

= ~ f (t) (4—2)
— 

n N
3
+i n—n

b 
N
5
—l

J = ~ I g~ (t) (4—3)
n 1

The formulas for the matrix elements of Eqs. (2—16) and (2—17) are

obtainable from Eqs. (2—18)—(2—28) . They are given as follows where

the ranges of the indices in and in are now specified :
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I 
~

r 
• -

a h 2 < m < N — 1

~mn 
= — kn <f , L a (O f ) > — — 2 (

2 < n < N
2
-l

C N + l < m < N — i
Y = — k n <f , L c(Ø f )> 3 — — 4
inn 0 0  —in —t — ‘ ---a —

N
3 
+ 1 < n < N

4
-i

1 
k 2 < m < N — 1

U 1 = _ _
~2~ <f , f i x 2 >  — 2 /mn 2 —m — 

~n ~4—6)1 < n < N —1— — 5
4

-

k N + i < m < N — 1
U =—---- 2~~Zf , f i x 2 > 

—

mn 2 —in — -~n 
4 7 )

- — - 
1 C f l <  N

~ —1 • • . a • • - e . —

hi hb l < m < N — 1

~mn 
= — k~~ <~~~~ , fi x L (0, f)> 

— — 

(4—8)
2 < n C N

2
-l

h3 hb l < m < N — l

~mn 
= — k~~ <gm , 

fl x L  (2~ ~~~~ 
— — 

(4 9)

— 
N
3
+ l < n < N

4
-l

h hb l < m < N - 1
T = — k < ~~ , fi x L  (~~ , 0)> 

— — 

(4—10)
1 C n < N

5
-1

el b l < m < N — l

~
‘
rnn 

= — k <~~~~ , ~~ (0, f)> 
— — 

(4—11)
2 < n < N

2
—1

e3 b 1 < m < N 1

~mn 
= — k <~~~~ , Le (0 , f ) >  — — 

(4—12)
N

3
+ l < n < N

4
— 1

e k 
eb 1 < m < N — l

T = — ~~ <z~ ~~ 
(~~, 0)> — — 

(4—13)
0 1 < n < N

5
—1
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The non—zero elements of the excitation vector ar e given by

= k n <f , H
i
> 2 < in < N —l (4—14)

in 0 0  —in —t — — 2

* 4.2. Formulas for TM Matrix Elements

4

Equations (4—4) — (4—13) define the elements of the matrices
4 -

in Eqs. (2—16) and (2—17). Explicit formulas will be derived here

for these symmetric products using the definitions of the operators

given by Eqs. (2—2) and (2—6) and the expansion functions (2—10) and

(2-li).

For Eqs. (4—4) and (4—5) it is necessary to know the magnetic

field due to a transverse directed magnetic current. This is obtained

by duality from the electric field due to a transverse electric current

which was used in Eq. (3—13) for the TE case. Thus one may write

Q = — k fl <f , L
ha (O , f )>1 0 0  Th t — in

k~~
= 

~~~~ 

{S
6(m—1, n—i , 1, 

1) + S
6
(rn—i , n, 1, —1)

+ 5
6

(m , n—i, —1, 1) + S
6(tn , in , —1, —l)} (4—15)

where the function S
6 is defined in Eq. (3—37) and k replaces k.D

.

Equations (4—6) and (4—7) are straightforward and one may

easily write
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k
= - -f  <f , Ii x

k AC
o n

for m — 1 = n o r j n = n

= 
(4—16)

-t 0 for in otherwise

Equations (4—8) and (4—9) require ~he magnetic f ield due to a

transverse directed magnetic current. Thus the inner product is

written as

Q3 
= — k n  X L1~~(0 f)>

k k ~~ 
t
~fi 

t +l
= 

~n 
° 

L 
~~~~~~~~f i x J  f(t ’) H

~
2
~

(kb I r_r ’J )dt ’dt

kn  ~~~•4~j  t
+i

+ 41
%~b 

r g~~
.
~~ x V V .  

Ln_i
~ 

~
t 2) 

r ’ )) d t ’dt (4—17)

where r is a vector from tne origin to a point on AC and r’ is a vector

from the origin to a point on AC
1 

U A C .  After some rnanipulation, one

may write the above in the form

6
Q3 = j,~~~~- 

~~ S~ 
- (4—18)

b b  i=l

where each S~ is defined by
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I
~
I
~_i 

-i -i ~ ~ -Li~ ~~~ 
+ 4)H~

2)
(Ik~~m n~l 

+ -~~~~ u t

— u t I)du du
s = 

2 — n 4

1 if r n~~~n—l

— ~~i J { 
~~~~~ 

+ 4) [a (-f (u+1)) + a 4 (1—u))]
-l

1 (2)~~
’ 1 12\ I

+ 
~
-i — ~ )H

1 (-f (1—u)) — + ~ )H~ ‘(-i (l+u))}du
if in = n—i (4—19)

1 1_
~~ j f ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— — u  t )du du
2 —n

s2 = 
~.. 

i f m # n

— 

~~ J ~
_ + 4)~ ct (-~~ (i+u)) + a(-~ (1—u))]

1 2 1 1 2
’
~
’

+ (-
~~

- + ~)H1 (—f (l+u))  - (-
~~

- - -~-)H1 (—i (1-u)) }du
if rn = n (4—20)

-

~~ f H~ ~%~m,n-i 
+ 2 -sin 

- 

2 
u’

if in ~ n—i or n—2

S
3 

= 
(4—21)

~ 

a(y
1
) if in = n—i or n—2
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- ~ 
~1 

H~
2) ( I k ~~~,n_ i - P - u ’ ~~~1F)du ’

if m # n  or n—i
S
4 

= (4—22)

- 

~~ 

a(y~~1) if in = n o r  n—i

1

-

~~~~~ J H
~

2)
(Ik~~~,n +P~~~

_
~~
!ue 

~~I)du ’
—l

ifm ~~ nor n—l
S5 

= (4—23)

— 
~~~

-
~~

-— a (y ) if in = n or n-i

H ( I k ~~~~~ ~~~~~~~~~~~~~~~~ -~~~u ’ ~~ I)du ’

ifm ~~~n o r n+l
= (4—24)

~
-
~-— a(y ) i f m = n o r n+l
n-

In the above , y = k AC .in b i n

For Eq. (4—10). the magnetic field due to a z directed electric

current is necessary and one obtains

_ _  
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Q
4 

= - k ~~~~~~, fl x Lh~~~~ 0)>

t
nl+l

= - k L -
~~

-

~~~~~~ 

• dt

k ~~ ~~~~~ ~~+l (r—r ’)
- .1 ~ x 

~~~~~~ 
H
~
2
~(~~ Ir_ r ’J ) dt ’dt (4-25)

where r and r ’ are vectors from the origin to points on AC and AC
respectively. The above is written in the form

1 k
— - -S AC 

~f m n2 m

Q4 
(4-26)

- ~~~~~ ~~~~~ H~
2)

(I~n in I)du t du
— 1 —l —in ,n 

i f m ~~ n
where y = k AC and 

~ is defined by Eq. (3—27).m b in 1n,n

For Eqs. (4—li) and (4—12) it is necessary to know the electric
field due to a t ransverse magnetic current .  Thus

Q5 = — k <g1~ Leb (O f)>

k ~rn+l
0 1  A

~ n X f  dt2 j ~in 
—

t
in

k 1 t +l
- 

~~~~~~(t )  • x fl x 
~~~(t’) x V

t t 
(4-27)in n-i
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where r is a vector from the origin to a point on AC and r ’ is a vector

from the origin to a point on AC
1 U A C .  This equation is very similar

to Eq. (3—29) and after some manipulation , one obtains

Q5 
= 

~~~~~ 
(S
1 + S

2
) (4-28)

where S~ and S2 are defined by

(I

if m n—l

S
1 

=
~~~ (4-29)

m n—i 
~~~~~~~ ~ + 4~ ~(m ,n-1)du’du if m # n—i

I
i f m n

S
2 

= 

~. ~. 

(4—30) 11
~~~~ J f (- ~j - + ~(rn ,n)du’du if m n

and ~(m ,n) is defined in Eq. (3—26). In the above, y = k.DA C .  II
Lastly, for Eq. (4—13), it is necessary to have the electric field

due to a z directed electric current . This is found simply from the mag-

netic field due to a z directed magnetic current used in Eq. (3—15). Hence

one easily obtains

= — <~~~ Leb (~~ 0)>

= J~- p
1 (4— 31)

where p
1 

is defined by Eq. (3—16).
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4.3. Formulas for TM Excitation Vector

The elements of the non—zero excitation vector are given by

Eq. (4—14). The incident electric field is z directed and is adjusted

so that it is equal to unity and has zero phase at the center of aper-

ture face F
1 with respect to the coordinate system in Fig. 4. Plane

wave arid line source excitations are considered separately.

For plane wave excitation , the incident magnetic field has a

component tangential to F
1 
given by

• w
• . 1 a - 1

~1 -3k [% cos ~ — (y — —
~~

--) sin 
~ ]H = C 

~
‘ e a (4—32)y

where the angle of incidence is measured from the negative x axis.

Substituting this into Eq. (4—18), one obtains

- 

W
a . i —jk AC sin~~

’
k n 1 jk (t — —)sin ~ a rn—i0 0  cOs (t) 

e 
a in 2 

[e — 1
in kn  • . i . .a a j sin ~ J kA C 1

Sifl ~

Jk AC sin ~~
— 

1 (4—33)
jk AC sin
a in

If an electric line source of strength I~ amps is placed at the

coordinates (x , y )  in region a, then the tangential component of mag-

netic field at F
1 

is given by

x H~
2
~ (k J x2 + ( - )2)

H = 
S a S S (4 3 ’)y i —

+ ~ 
— )

2 
H~

2
~
’(kJ x

2 
+ (

where I~ has been adjusted to
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I
i
=~~~~ 

-

k n H (2)
(k~~~~~~~~~~~~ ) 2 ) —

Substituting Eq. (4—34) into (4—14), one obtains

k~~ x0 0  5
in k f la a 

jH
(2)
(kJx

2 
+ (~~~-y )

2
)

kA C
1 

(~ + 4~~
) 
(k ‘y)~) 

dv
-l 

(_ rn~l(~~1) + tm_i y
5)
2

+ 
kA C 

j

i 
(_ + 4H~

2)
(kJX

2 
+ (~~~(v÷l) + - 

~~ dv2 
~~ Ac—i 

~~ x
2 
+ (~~~ (~~l) + t -

(4—36)
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Chapter 5

MEASURED QUANTITIES

Once the magnetic currents on the aperture faces are determined ,

several transmission characteristics of the slit may then be computed .

In each following section, the TE case is treated first, followed by
4

the TM case.

5.1. Measurement Vector -

For the TE case the magnetic current sheet at F
3 

is z directed ,

hence, to measure the magnetic field Hc at a point in region c as shown

in Fig. 7, a magnetic line source K~~ is placed at the measurement point.

From reciprocity one obtains

H
c 

K2’~ = J H~
’ • k1

3 
dy (5—1)

F3

where H
2, 
is the magnetic field due to K~~ radiating in the presence of

a complete conductor and Hc is the magnetic field of currents radi-

ating in the presence of a complete conductor . After using Eq. (3—2)

f or N3, Eq. (5—1) becomes

HCK
2, 

= 

N~-l 

~~ H~dt

r
3 

n N
3

2, N-l W
c

= — V3 f~ ~~~~~~~~~~~~~~~ 
(5—2)

c n N
3 c

2

Here the coordinate origin is now in the center of and the above

equation inay be written in matrix form as
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Fig. 7. Measurement of H
c at ~~~~ , TE case.

~~~~

w c _

Fig . 8. Measurement of H
c 

at r , TN case.
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= 

~~f ~~~m 
e

_ ik crm ~e ~3 (5 3)

-~-ewhere the tilde (-) denotes transpose and I is a TE measurement vector

whose elements are defined as

Trk r jkr
I
e 

= - e c in 

- 

J 2  g (y) H (2) (k~~ y~ - r~~~)d y (5-4)

for n = N , N +1,..., N —1. If r >> A so that far—field measurements
3 3 4 rn c

are of interest , the large argument approximation to the Hankel function

is used in Eq. (5—4) to obtain

w/2
ef (C Jk

~Y 
Sifl~~

= — J g (y)e dy

-w /2
C

AC k A C
jk (h +_ ~a)sin~ sin 

~ 
c n sin q)

c n 2 2
= — AC e 

k AC

~ 

c n sin ~)

where h = -
~~~

- — ~ AC. for n = N,, N
3
+l ,... ,N

4
—l. This can be con—

i=N
3

veniently written in terms of the excitation vector of Eq. (3—40).

For the TN case , the magnetic current sheet at F
3 

is y directed ,

hence the electric field EC in region c is ineasured by plac ing an

electric line source I~~ at the measurement point as shown in Fig. 8.

Again from reciprocity, one obtains

Ec . = •J . H
2, 

. dy (5—6)

F 3
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Equation (4—2) is substituted for ~-i~ and the above is rewritten as

N-l

= J ~ V3f (t) • H
2,
dt (5—7)

~ 
n N

3
+l

where use has been made of the fact that f ( t )  on F3 is —
~~~ directed .

Using the y component of Ht in the above, one obtains

= - 

k I t N
4
-l 

~3 2 H~2)(k~~y~ - r j)dy 
(5-8)z 2j in N+l n / 2  23 w ~j x + ( y -y )

2

where r x ~ + y ~~~. An expression for E
C may now be written in—in nr m~ Z

matrix form as

E
C 

= J.~
_ 

e~~
’
~~
’
~
in ~~ ~3 (5 9)

where is the TM measurement vector whose elements are given by

= - e c
r
m 

J2 f (y) 1 c ~~~ 
- r11, j

2

)dy 
(5-10)

w /x + ( y - y )y i n  in

2

for n = N +1, N +2 ,..., N — 1. If r >> A for far field measurements ,3 3 4 m c

Eq. (5—10) becomes
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w

f jk y sin~
= c os q f  f~ (~) e dy

jk (h — — — ~~)sin q
2AC e C f l  

kA Cn c n
= cos 2 sin 

~ 2 
sin q,)

j(k AC sin 4 )c n

ACI jk (h + ~~
1)sin

V 2AC e C n kA C
n-i . c n—i -— cos ~ sin ( sin ~) (5—il)
j(k AC

1 
sin 2

where h = — 

~ 
AC

i~~ 
for n=N

3
+1, N

3
+2,. . - ,N

4
—l. If each

i=N
3
+l

AC = AC on I’
3~ then (5—11) become s

k AC

f jk h sin e Isin (_
C sin 

~~ 
2

= — cos ~ AC e 
c n L k AC sin 4 (5—12)

( C 
2

5.2. Transmission Coefficient

The transmission coefficient of the slit is defined by the

ratio
p

T = 
~~

-
~~

-
~~

- (5—13)
iN

where 
~t3 

is the time average power transmitted through the aperture face

F
3 
and 

~iN 
is the time average power intercepted by the aperture face

when the source is normally incident. If the time average power trans-

mitted through aperture face is denoted by P~1
, then when the slit
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is filled with a lossless medium, must equal 
~t3~ 

This may be used

as a check on the numerical solution when the imaginary parts of the corn—

plex power through F
1 
and F

3 
are not significantly different.

Consider the TE case first. A magnetic line source is placed

at (x , in region a to produce an incident field. The slit inter—

cepts a fraction of the incident power . This fraction is given by

1’iN 
= 

~~a 
Ri!

2 
= :~ 

IK~i
2 

(5—14)

where B = 2 tan 1 (-
~~

--
~~

--) and R
i 
is the strength of the magnetic line

source. A normally incident plane wave in region a produces an

intercepted time average power given by (IE
1
1 = 1 volt/meter)

13
iN = W n I H I = -

~~~~ (5—15)

To compute the time average power into region c, the real part of the

Poyn ting vector f lux at is integr ated along r3. This gives the

formula

2 3 c * - ~3
~t3 

= 
k~~ 

[‘1 1 V (5—16)

This is the usual equation for power flow into a network represented by

an admittance matrix [ac
] except for the factor of l/k~~~. This factor

appears because of the factor — kr i in Eq. (2—19). Another method for

finding P~3 
is to integrate the Poynt ing vector f lux over the fa r f ield

in region c . This gives
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-11/2

= Re J E
c X H

C* 
~ rd~

--11/2

k ‘11/2
= 

c •J. ~ef 
~
3

l
2 
d~ (5—17)

C

For the TM case , an electric line source is placed at (x , -t~S

in region a. The fraction of the time average power intercepted by the

slit is given by

k~~ . Okn -
~ iN = 

4 = 
a a  1i1 2 (5—18)

where Ii is the strength of the electric line source and B is the same

as before. A normally incident plane wave gives

w • W

~iN 
= 

T~ 
E
l

i
2 

= (5—19)

The time average power for the TM case is given by Eqs. (5—16) and

(5—17) but with TM quantities used .

5.3. Power Gain and Normalized Field Pattern

The power gain function is defined as the ratio of the radiation

intensity in a given direction to the radiation intensity which would

exist if the transmitted power were to rad iate uniformly over half space.

This gives, for the TE case

c 2
TI r fl H k —

C(4) rl
~

ino, ~~~ ~ = 
2~~ P 

1ef 
~
3

I
2 

(5—20)

and for the TM case,

- 
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G(~) r’~~ofl~~~ 
E

d 2  
= 2r~ P 

j~~
mf 

~
3

I
2 (5 21)

If the medium in region c is lossy , the term “radiation intensity”

does not apply. Here it is desirable to define a directive gain as

the ratio of the time average power density produced at a certain

range in a certain direction to the uniformly radiated time average

power density at that range.

The normalized field pattern is another quantity of interest

and is computed in the far field by

e I H c ( 4 ) I  ef
F (4~)= 

~~ = — 
I (5—22)c -‘-ef -’-3

H I V !z max max

for the TE case, and by

lE
c(~)i ~inf ~3

Fin(~) = 
z 

= -. (5—23)c -‘-inf~~3
t E l  II V~z max max

for the TM case. The denominator denotes the maximum value of field

— magnitude measured in region c.

5.4.  Slit Impedance and Polarizability

Since the fields in reg ion c arise from a magnetic current

radiating in the presence of a complete conductor at x = d , the magnetic

vector potential for these fields may be written as

L - _ _ _
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w

= 

~
- f 2  M3(y ’) H

~
2
~ (k !r - y’~~ )dy ’ (5-24)

where the coordinates of Figures 7 and 8 are used and r replaces r as
- -m

the field point. The following assumptions are made:

a) w = w  w.a c

b) k y ’ << 1 for y’ e [ —  ~~ , ~~
] .

c) The field point r is such that I t !  >> y’.

d) The incident field is constant on F1.

The Hankel function in Eq. (5—24) is now approximated by (24 , Append ix D]

H~
2
~ (k Ir - y’~~) (1 + 4 sin ~) (l  + jky ’sin ~)e

3 C (5 25)

Neglecting te rms of order y’2 and higher , one can write the magnetic

vector potential as

-jk r w

F 
e C 

J2 M
3
(y’)dy ’

/2Trjk r
c w

2
-jk r

jk e C ~ j fl~ * 
~
._

+ 
C 

1
2 M3(y’)y’(l + )dy ’ (5— 26)

v’2m jk r  ) i~~
r

- c
2

The first term in the above equat ion is dominant , and hence will  be con-

sidered in the following discussion for each polarization.
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For the TE case, the magnetic field in region c is given by

jk jk —jk r W

= — -
~~
-
~~

- F = — ~~~~
— -

~~~~~~
- e C M3(y ’)dy ’ (5—27)

A slit impedance Z is defined by the equation

w

f
~~M3(yt)dy~ Z(H l

~
C w) (5-28)

isc .where H 1 is the short circuit incident magnetic field evaluated at

the center of This is obtained by letting the sources in region

a radiate in the presence of a complete conducting plane at x = 0.

The magnetic field HC is now written in the form

~~~~~-jk r .
E

d 
= — ~~ ~~~~~~~~~~~ e ~ H~~~ (5—29)

which may be compa red to the measur ement vector fo rmula given in

Eq. (5—3).

For the TM case, the electric field in region c is given by

/]i~ -jk r W

= — . V x F — cos4J~5~ e C J ~~ M3(y I ) d y t (5— 30)

If p is the magnetic charge density associated with the transverse

directed magnetic current then
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j ’2 M3(y t ) d y I = 
_~ f2 yI (V1

w

- = jw
J 

Y P~dy

2
4

= 

~~~ 
viny (5-31)

where the continuity equation

H
3 

= - (5-32)

has been used and a magnetic dipole moment is defined by

2-rn 
= 
_L_ J2~ i

3(y I)dy f (5-33)

A slit polarizability a is now defined in terms of the y component of

Eq. (5—33) by the equation

= a (wH1~~) (5-34)

where again H~~~
C 

is the tangential component of the short circuit inci-

dent magnetic field evaluated at the Center of F
1. The electric field

is expressed in terms of this polarizability as

k v ~ cos~~ ~~~~~~~~~ -jk r
EC = 

C C 
e c a H 1SC 

(5 35)z 2 V 2rr m y l

which also may be compared to the measurement vector formula given by

Eq. (5—9). In the preceeding discussion , Z has the d imension of ohms

and a has the dimension of length.
In
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Chapter 6

MODAL SOLUTION

6.1. Problem Formulation

The discussion thus far has been concerned with slits of arbi—

trary cross section. If the slit has a rectangular cross section , the

equivalence principle may be used to break the problem up into three

isolated regions [161. The fields in region b then have a modal repre-

sentation, which is not necessarily the case when the slit cross section

is an arbitrary shape.

In this chapter , a special case of slit cross section is con-

sidered which allows region b to be considered as a sequence of two—

dimensional rectangular cavities each coupled to another by an aperture.

One such possible configuration is shown in Fig. 9. Each cavity may

be filied with different material . In general, region b will consist of

Q such rectangular sub—regions. The q t~1 rectangular sub—reg ion is

specified by dimensions as shown in Fig. 10. The equivalence principle

is applied as in [16], so that each aperture face F
q~ 

for q = 1,2,...,

Q ÷ 1, is replaced by a perfect electric conductor with a magnetic current

sheet residing on each side. These magnetic current sheets are chosen

to assure continuity of the tangential component of electric field at

each F~ in the original -problem.

The original problem has now been broken up into Q + 2 isolated

regions, each with postulated equivalent sources. The total field in
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Fig. 9. The slit cross section , region b , as a sequence of two—

dimensional rectangular cavities . Q = 4

- 
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Fig. 10. The qth rectangular cavity of region b.
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. - i a i a i i . i iregion a is (F + E  , H + H  ) ,  where (F , 1-1 ) 15 due to sources (J , H )

radiating in fron t of a comple te conduc tor at x = 0 and (1a Ha) is due

to magnetic current sheet H
1 
at F1 radiat ing in front of a complete con-

ductor at x = 0. The magnetic current sheet is given by

= ~ at F1 ( 6—i)

The total field in each sub—region bq of region b is (E~~, ~
b~) due to

magnetic currents — M at F and M at 1’ radia ting inside a closed ,—q q —q+l q+l
two—dimensional , conduct ing box filled with material of permeability Ub

and permittivity C
bq • These magnetic currents are given by

M ~~~~~~ atF (6—2)— — q

M =~~~ x ~~~ at F (6—3)— — q+l

The total field in region ~ is (E
C 

H
c
) due to the equivalent magnetic

current sheet 
~~~~~~~~~~~ 

at F~~1 radiating in front of a complete conductor

at x = d. This magnetic current sheet is given by

= at F~~ 1 (6— 4)

The preceding equivalent magnetic current sheets must also be

determined so as to assure continuity of the tangential component of

magnetic field at each aperture face in the original problem . Thus the

following equations are written :
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p pr - 

- 
-

~~~~~~~ 

-

~~

2~~~ (O , N ) + B~~’
1( M )  - B

lh
~~~

2
( M )  = - at F

1

B~~’
1( M )  ÷ Blh

~
2
(M) + B

2h
~
2 ( M )  — ~~~~~ = at F

2

(6 5)

B
Q_lh

~
Q_l

( M )  + BQ_lh~ Q (M ) + BQh~
Q (N ) - B~~’~~~ (M )  = 0 at F

Q

Qh ,Q ( M )  + BQh ,
~~~

l 

~~~~~ 
+ 2

~~~~i 
(~ , ~~~~ = 0 at

The operators Lha and LhC 
are defined by Eq. (2—2) and is the

tangential component of the magnetic field due to sources (J
1
, N

1
)

radiating in the half space filled with 
~~a

’ Ea
) in the presence of a

complete conductor at x = 0. The factors of 2 in Eqs. (6—5) come from

the images of the magnetic current sources. The operator g ives

the tangential component of magnetic field at F
q 
due to a magnetic cur-

rent sheet at F radiating inside the two—dimensional cavity bm. The

superscript h denotes magnetic field operator .

Using the method of moments procedure , ene can reduce Eqs.(~-’5) to a

system of matrix equations .. Each aperture face F is divided into N
q

segments of constant length A .  It is assumed that the equivalent magnetic

current sheets may be expanded as a linear combination of basis functions

defined on each domain F . This is written as
q
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N
M = V e (y) on 1’ (6—6)

n 1  q, n —q,n q

for q = 1,2,..., Q+l. The coefficients V
q,n are complex scalars to

be determined and the functions e will be specified for each polari—
—ci n

cation. The testing functions are chosen to be the same as those used

for expansion and a suitable symmetric product is defined by

<A , B > = I A • B dy (6—7)—q -q j -q -q
Q
U I ,

q l~~

where A and B are vector functions defined on F .—q —q q

Equation (6—6) is substituted into Eqs. (6—5) for the unknown

magnetic currents. The symmetric product of the q
th equation of (6—5) is

then taken with for m = 1,2,..., Nq 
and q = 1,2,..., Q+1. The

result is a system of linear equations which is written in matrix form as

a bi blY +Y
11 Y12 

V
1 I

+ ,f

’
~~~ 

0 
V
2 0

• 

= (6—8)

o 
Y~~ Y~~ + y~~ 

y
~~ V

Q

Y~~~ Y~~~+Y~ V
Q~ ~

where 
~q 

are column vectors containing the coefficients V
1
,V 2,. ~

V
q N •
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The matrix in Eq. (6—8) is block tridiagonal. Each submatrix has

elements given by the formulas:

= — k r~ <e , 2Lha (O , e )> (6—9)
mn 0 0  —l ,m —t — —l,n

(~bci) = — k fl <e , B~
1h
~ 1(e )> (6—10)

11 inn o 0 —q ,m —t q —q , n

(~bci) k 1~ 
<e , B~~ ’~~~~(e )> (6—11)

12 mn o o —q,m —tq —q+l,n

~~~~~mn 
= k

0fl0 
< +l ,m’ ~~~~~~~~~~~~ 

(6-12)

= — k
0~0 

<
-~-q+l,m

’ -~tq+i~~~~q+i,n~
> (6—13)

c hc
= — k

0~0 -~Q-1-i ,m ’ 
2J
~~÷~

(Q, -~Q-I-i,n~ 
6—14

where the factor —k ri has been multiplied through Eqs. (6—5). The

non—zero elements of the excitation column are given by

I~ = k
0~0 ~~~~~~~~~~ 

(6—15)

The ranges of the indices in and n are determined af ter  the specification

of the expansion functions.

The original problem may be viewed as Q+2 cascaded net-works. Each

network represents an isolated region and has a characteristic admittance

matrix which depends only upon the properties of the region which the

network represents. Due to the choice of expansion functions made in the

next two sections , it will be seen that the sub—matrices of the composite

matrix in Eq. (6—8) have the following properties:

58

hIll I._ ~~ - — ~~~— - -~~ ~A~4~~~
I -~ ~~~-‘ 

- ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ . - ~~- ._~ ..1 .1,a.1~áuiuiiIIEIIIIiIij N1IlI~d~~l



7~~~~~~~. 
- 

- .

1) (t
a
] and [y

C
J are symmetric Toepiitz matrices, hence

only one column of each need be computed .

2) and are symmetric matrices.

~ 
~~~~~~~ 

=

The matrix of coefficients in Eq. (6—8) is block—tridiagonal and

4 symmetric , hence special computational and storage procedures are.
~ used.

~

6.2. TE Case

For this polarization, the equivalent magnetic current sheets

are z directed . Thus expansion functions for the aperture faces F
q

and F are chosen asq+l

(n—i) A
q ~~~. ~ 

— Y~ q ~~. 
flA

q
!q, n (Y) = (6—16.1)

0 y elsewhere

for n = 1,2,..., Nq 
and

(n—i) A
q~~~ ~ 

— 

~rq 
~ flAq~1

-~q+i,n~~
’
~ 

(6 16.2)

0 y elsewhere

for n = 1,2,..., N
+1
. Also, in the above, Aq 

= Wq /Nq for q = 1,2,. - - ,~~~~~l.

Equations (6—16) are written with respect to the coordinate system shown

in Fig. 10. Figure 11 shows the order in which the functions appear

on aperture face F .

~~~~ __________ - -



:w~~
; 

~~~~~~

• ~~l~Nq

- . reg ion bq

.9 

W
q

~q, 2
- 

~q, l
_ __

11
Fig. 11. Order In which functions £q,n appear on aperture

face F for TE case.q
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The elements of [v a) are determined from a specialization of

Eq. (3—15) to F
1
. Hence , one may easily obtain the formula

2k fl ~ J J H~
2
~ (yl~ 

- + (m-n)l)du ’du

if m~~~n
= (6—17)

2 J [a(~ (u+1))+ a(~ (l-u))]du 

n

where y = k A
1 and the function a is defined by Eq. (3-17). The

matrix [y C
J is determined from (6— 17) where y = k A ~~.. , k replaces

k , and ri replaces ria c a

To compute Eqs. (6—10) — (6—13), TE fields must be constructed

inside a two—dimensional perfectly conducting cavity. To do this , an

electric vector potential Fbdj = ~,bq,. is chosen for each region bq.

The fields in each region are obtained by

= - 
~~ ~~ ~

bq 
- + 

~~~ 
(6-18)

= - 

Jk bg ~bq . (6-19)

~bq

where kbq = W
~~bq

t
bq 

and = )/
~bq~

’tbq Each scalar function ~,
bq

satisfies the equation

+ 

~2~ bq 
+ k~

q
~b~ = 0 (6-20)

ax ay
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everywhere in region bq except where the sources are. Considering the

magnetic current sources e at F and e at I’ separately , oneq —q+l,n q+l

may solve Eq. (6—20) with the appropr iate bounda ry conditions on th e

cavity walls. The resulting magnetic field operators are then de-

fined by

jk. C ~~~~~ ( x — d  )
B~~’~~(e ) = ~~ ~~ p xp q 

~—z —q,n h
qflbq p O  ~~~ sin k~pdq

h

1 eq n (Y ’) cos 2~~_~ dy ’ (6—21)

0 q

and

jk. c x
~~~~~~~~~~~~~~~~~~~~~~~ 

) = 
A 

_____ 
p xp

—q+i,n — hqflbq p O  ~~ sin k~pdq 
h
q 

—

h

eq+i n (Y ’) cos ~~~ dy ’ (6—22)

where the subscript t has been replaced by z. The second subscript on B

will be either q( x = 0) or q+l(x = dq)~ In the above, C = 1 for

p O , c 2for p~~~O, and

(k~~)
2 

= k~q 
- ( iL) 2 

(6-23)

Thus, for Eqs. (6—10) and (6—13), one may obtain
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--

pTiA

In c cot k~~d 
S f l

2h
(~bci) — — —

~~~ (k A ) P Xp q~ ________

~~~ IUfl 
~bq 

~ q hq ~~~ — (
k~~~t q

) 2

~2L [Y
~,q 

+ (in — .S)A ] cos 
~~~~~ 

[Y 2,q 
+ (n — •S)A ql

(6—24)

f o r l < m < N  , l < n < N  , and
— — q  — — q

pnA
g+l 2

in A ~ cot k~ d 
sin - 2h

(~
bq) = — —i (k A ) v P xp q ___________

22 mm nbq 
o q+l h~ 

~
=0 
‘1 — 

~ 

p71 )2 
PIIAq+i

I I c h  2h
v o q q  q

cos 
~~ ~~rq 

+ (in — .5)A
~÷1I cos 

~~ 
1
~ rq 

+ (n -

(6—25)

f or 1 ~ m $ Nq+i~ 
1 ~ n ~ 

N
~+i

. The formula for Eq. (6—11) is given by

sin
in A c csc k~~d 2h

(~
bq) = 0 (k t~ 

_a xp g __________

12 inn 
~bq 

o q+l hq p O  / — ( ~)1T )2 
P~T1Aq~1

k. h 2h
V

pitA
sin

pitA 
q cos ~!L (y,, + (m - . S)Aq I

Cl
2h

• cos ~~ ~~rq 
+ (n - . 5)A +1] (6-26)
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for 1 < rn $. Nq i~ 1 ~ n ~ 
N~~1. The formula for Eq. (6— 12) is easily

seen to be

~~~ mn 
= 

~~~ nm (6—27)

f o r l < m < N  , i < n < N .— — q+l — — q

- 

I 

The non—zero elements of the excitation column vector are obtained

as in Section 3.3. Thus for an incident plane wave, Eq. (3—40) becomes

V

‘ I - 2k n jk [ (i n  - .5)A — -
~~~~

] sin
1
1
= ° ° ( k A ) e a 1

in k n  a la a

k A
sin 

~ 
a 1 sin ~t )2 

(6—28)

sin

The formula for line source incidence may be obtained by a specializa—

tion of Eq. (3—43).

6.3. TM Case

For this polarization, the equivalent magnetic current sheets

are y directed . Thus expansion functions for the aperture faces

and F are chosen asq+l

+ 1 - n)~ (fl~l)A
q ~ 

— Y~q ~ fl~q

= 
~ 

~~q 
+ 1 + n)Z flA

q 
< y — Y~q ~ (n+l)~q (6—29,1)

0 y elsewhere
for n = 1,2,..., N~

_l and
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( rq + 1-n)Z (fl_l)
~ q+i ~ 

- 

~rq ~

;

~

1,

~~

(y) = ( rq 
+ l+n)~ ~~~~~ ~ 

- 

~rq ~ 
(n+l)z~~~1 (6-29.2)

O y elsewhere

for n — 1,2,..., N~~1—l. In the above, A
q 

— V
q/Nq 

for q = 1,2,..., N~—l .

Equations (6—29) are written with respect to the coordinate system shown

in Fig. 10. Figure 12 shows the order in which the functions e appear
—q,n

on aperture face 1’ -q

The elements of ~~a
J are determined from a specialization of

Eq. (4—15) to I’
1~ 

This is written as

k~~
= 
k~~ 

{S(m—l , n—i, 1, 1) + S(m—l, n, 1, —1)
a a 

+ S(m, n-i, -1, 1) + S(rn, n, -1, -1)) (6-30)

for 1 1 in < N1, 1 < n I N
1 

and S is def ined by

11L _ J J [ (~ + 4)(~f + 4) — ¶]H~
2
~ (yj~- - ~~~

— + (m-n)J)du’du

if in n

S(m ,n ,p ,q)  = 
~~ 

J { [( ~ + 4)(~ + 4) - 
~~ ] [a(~ (u+l)) (6-31)

+ a (~ (1-u))] + q (
P~B + 1) [(. - 

~)

• H~
2
~~~ (1-u)) - (4 + ~~ )H~~

2

~~~~~~ (1+u))]}du

if m = n
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where y = kA
1 and the function a is defined by Eq. (3—17). The

matrix [y C
] is determined from Eq. (6—30) where y = k A ~~1, k

replaces k , and n
~ 

replaces na.

To compute Eqs. (6—10) — (6—13), TM fields must be constructed

inside a two—dimensional perfectly conducting cavity. To do this , an

electric vector potential ~bq = ~,bq,. is chosen for each region bq.

The fields in each region are obtained by

= — il
%q~

1bq 
q (6—32)

(6-33)
— — — — a y  ax

Each scalar function ~~ satisfies Eq. (6—20) everywhere in region bq

except where the sources are. Considering the magnetic current sources

at Fq and ~q+1,n 
at F

q+i separately, one may solve Eq. (6—20) with

the appropriate boundary conditions on the cavity walls . The resulting

y components of the magnetic field operators are defined by

- 
~~~~

= — 2j xp xp
—y —q,n 

~ ~%q
flbqhq P=l sin k~p

d
q

and 

• sin 
j

h
q 
eq~~ (F ’)sin ~~~~ dy ’ (6-34)

~~
= ~ 2j xp xp

—y —q+l,n l
%qfl bqhq P=l sin k~pdq 

hq

• 
1

h
q 
e
q+i n (Y ’) sin ~~~ dy ’ (6-35)
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where the subscript t has been replaced by y. The second subscript will

be either q(x=O) or ci+l(x=d~). Equation (6—23) also holds for k~~. ~~~~

for Eqs. (6—10) and (6—13), one may obtain

~~~~ inn 
= - ~~~~~~~~~~ (k~Aq)~~ 

p~l’ 
- 

~k,0 h~~ 
cot k~pdq

— 

pitA
sin —~ 

~‘

- 

2hg 
~~~ 

2iL ( r ~~ + mAq)
-‘ I ___q q

2hq

• sin 
~~~~

- 

~~~ + nAn) (6—36)

for 1 < m < N —1, 1 < n < N —1, and— — c i  — — q

~~~~~mn 
= - ~~~ O (k0Aq~1) ~~±i 

p l  
jl - 

~~ qh~~ 
cot k~pdq

pTrA
sin 2h

PTFA
q+i 

sin ¶
q ~

‘rq + ~~q+1
)8in

~~~ ~~rq + nA
q+i
)

q (6—37)

for 1 1 m I Nq+1~
l
~ 

1 1 n I N~÷1~l. The formula for Eq. (6—11) is

given by
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~~~~j :  . 1

2jn A

~~~mn 
~~~~ ~(0

A~~ 1
) ~~ 

~~~~~~~ 

— 

~i i ~~

2 
csc k~p

d
q

pitA pitA
__ - g+1 2sin sin

I

: 

• { ~~~~~ [ ~~~~~~ sin ~~ (Y~q + mAq)

sin 
~~ ~~rq 

+ nA
~÷1
) (6-38)

for 1 I m I N~
_l
~ 1 I n I N~~1

.-l. The formula for Eq. (6—12) is easily

seen to be

= 

~4~~ nm (6-39)

f or I < in < N —1 , 1 < n < N —1.— — q+l — — q

The non—zero elements of the excitation column vector are ob-

tained as in Section 4.3. Thus for an incident plane wave, Eq. (4—33)

becomes

2k ri 
~~ 

jk~ (1flA
1 

— -i-) sin
I = — 

kn  
(k
a
A
i
)C05 4 e

2- a l  . i
sin (—

~~
--— sin 4 )

k A (6—40)
a l  isin i~

A formula for line source incidence may be obtained by a specializa-

tion of Eq. (4—36).

t 
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Chapter 7

APPROXIMAT E SOLUTION TO SLIT OF RECTANGULAR

CROSS SECTION

7.1. Problem Specialization

In this chapter , a slit of rectangular cross section is con—

sidered as shown in Fig. 13. This is a special case of the more general

problem considered in Chapter 6 and Eqs. (6—8) become

: 1  
~a + 

1 ~i2 
ti

= (7—1)

1 
2

+ y C 2

since region b is represented by one rectangular region. This reg ion

has the composite admittance matrix representation denoted by

b
12

[rb] = (7—2)

b
22

where

~~~l~mn 
= - k n  <

~1m’ 
‘

-~ln~
>

(Y~1) 
= k~~ <

~2m’ ~~~
‘1

~~1n~
>

(~b ) = (yb ) (7 5)
l2 mn 2i t~n

(~b ) = (~b ) (7—6)22 mn li mn
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Fig. 13. Slit with rectangular cross section .
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Equations (7—3) and (7—4) come from the specia1izatio~’ of Eqs. (6—10) and

(6—12) and the last two come from the fact that each aperture face is

divided into N subsections each of length A = W/N. The elements of [~
a

J

[y C ] and in Eq. (7—1) are obtained from Eqs. (6—9), (6—14), and (6—15)

respectively .

It is desired , in this chap ter , to ob tain a suitable approxima tion

to the magnetic field inside region b so that simplified formulas for

Eqs. (7—3) — (7—6) may be obtained. For each polarization , certain assump—

dons are considered so that the fields in region b are approximated by

plane waves travelling in the +~~ and —
~~ direction. This corresponds to

neglecting a transverse component of field in each case and the approxi-

mation is expec ted to work best when:

1) The inciden t field is a normally incident plane wave.

2) Region b is filled with a dense material, i.e., the

intrinsic wavelength of the material filling the slit

is much less than that of free space.

7.2. TE Case

For the TE case the magnetic current sheets N
1 
and 

~2 
are z directed .

If they are constant on F1 
and F

2 
respectively, then from image theory ,

the fields in region b are given by +~ and —
~~ travelling plane waves. The

currents 
~i 

and 
~2 

become unbounded at the ends of F
1 
and F~ but this is a

very localized phenomenon , particularly when region b is a dense material.

Thus if w >> the magnetic currents should be constant enough to neglect

the x component of electric fieid .
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These remarks lead to the assumption for the z directed magnetic

field as

b 
_•jk

b
X Jk,0

x
H = A e + B e  (7—7)

- 

I 
where A and B are constants. Computing Eb f rom Eq. (7—7) and satis—

- $  
y

f ying the boundary conditions at x = 0 and x = d , one obtains
4

- cos k.0
(x—d)

-
~~ 

sin k
bd 

if (n-l)A I y I nA

BTh
~
l(e ) = (7—8)

—z —in

0 if y Is elsewhere

where -~ln 
is defined by Eqs. (6—16). Thus Eqs. (7—3) and (7—4) take

the simple form of

n
(yb ) = — ik A —~~~ cot k d i5 (7—9)
llmn o n b 

b inn

and
n

(~
b ) = jk A —i csc k d ~ (7—10)2l mn o 11b 

b mn

where~~ = 1  ifm nand 6 O f o r m #n .
inn inn

These equations may be obtained by an alternative method . Since

E is assumed negligible , conducting planes may be placed at y = nA for

a = 1,2,..., N, so that each magnetic current expansion function radiates

inside the closed conducting box 0 I x I d , (n—l)A I Y I nA. Special—

izing Eqs. (6—21) and (6—22) to this problem , one obtains Eq. (7—8).

The p = 0 term is the only non—zero term.

L _____ 
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7.3. TM Case

For this polarization , the magnetic current sheets are y directed

and even if N
1 
and li2 are assumed constant over and F2, the field in—

side region b is not represented exactly by a plane wave. If one con—

siders the constant magnetic current distribution N
1 

= K ~ radiating

inside the closed conducting box 0 I x I d, 0 I y I w, then one may

express the fields inside the box as

sin (Jl - (~~~ )
2 

~~ (x-d ))

E = — -
~~~~~ 

-~~~ 
_________  

sin (7—11)

sin — ~~~~~ 
w

sin (fl — (~~i_)
2 

~~ ( d ) )

H = — 
- 

4K 
_____________________________ 

c o s  ( 7— 12)x J kbnbw p=l sirijl — (J L ) 2kbd 
w

_ _ _ _ _ _ _ _ _ _ _  
cos /1 - (~~ _)

2 
k.0
(x-d)

H = - 
4K 

~ / (J_) 2 
- (_.i_)2 v kb 

~~~~
~~b p=l V pit k

b 
sinjl - (~

j~_)2 
~~d

(7—13)

Since H has no average value on 0 1 ~“ I w, and if k.bw >> 1, it is

reasonable that one could neglect H as compared to E and H
x z y

If only Ez and Hy are considered in region b , then, one may pro—

ceed with the plane wave assumption as before to obtain

lh ~. 
!i~

(Y) cos k
~D
(x_ d)

~~in~ 
= 

~ 1
~b 

sin k.
~,
d 

(n—l) I Y I (n+l)A (7—14)

where e1 is given by Eqs. (6—29). Thus for Eqs. (7—3) and (7—4),

one obtains
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and 
~~1i~mn 

= - Ik0A ~~ cot ~~d 
~mn (7-15)

~~2l~mn 
= Ik0

A ~~ csc kb
d 1mn (7-16)

where

-
~~~ if in — n = 1

I = 2infl if m = n  (7—17)

0 otherwise

Alternatively , since E
x 

= 0, and E = 0 at y = (n—l)A and

y = (n+l)A for each expansion function 
~ ln ’ conduc ting planes may be

placed at the ends of each e so that each e radiates inside the
—ln —in

closed conducting box (n—l)A I y I (n+l)A. Specializing Eqs. (6—34)

and (6—35) to this problem , one obt ain s

- ~ k cos k (x—d)
B

Th
~
l(e ~ 

= 2 
xp sin sine (7—18)

-i~ —in kbnb p=l (pit) sin k d 2 2

p odd XP

where k2 = k~ — (2L)
2 

Keeping only the p = 1 term, one obtains for

Eqs. (7—3) and (7—4) the following formulas

~~~l~mn 
= - jkA ~ cot ~ k,0

d 1n 
(7-19)

~~~1~mn 
= jkA B csc B k

b
d y (7-20)
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where

B

- and

-; iç
~ 

~~~~ 
— if rn—n i = 1

1mn 
= (8~~2 if in n (7 21)

— (... 0 otherwise
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Chapter 8

NUMERICAL RESULT S AN!) DISCUSSION

8.1. Modal and Non—Modal Results

Some representative computations are presented here for

filled slits of various cross sections. The cross section shapes

4 and their d imensions are shown in Figs. 14—16 . A comparison will

f irst  be made between the results obtained from the non—modal solu—

tion of Chapters 1 to 4 and the modal solution of Chapter 6. The

quantities to be compared are the magnetic curr ent on the aper-

ture f aces and F
3 
and the electric current on the contour C

defining the slit cross section . This electric current, which appears

as an unknown in the non—modal solution, is computed in the modal

solution by f irst  solving for the magnetic currents. Then, using

parallel plate guide modes, the tangential magnetic field due to

these magnetic currents radiating inside a closed two—dimensional

conducting box is computed lust inside the contour C. This corre—

sponds directly to the electric current unknown in the non—modal

solution. The magnitudes of the electric current times n0 and the

magnetic current are plotted as a function of their position on the

contour C (cf. Fig. 4). Horizontal and vertical lines are used to

— denote quantities expanded by pulses while straight lines connect the

points given by the triangle expansion functions. Each line F~ corn—

prising the contour C is broken up into Ni+l 
— Ni straight line seg—

merits which are shown scaled in the figures. The excitation consists
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of a plane wave incident from the left of the slits at an angle

measured with respec t to the negative x axis.

The first example to be considered is a slit of rectangular

cross section of width w = O.8X and thickness d = O.2X (A being the
0 0 0

wavelength in free space) . Regions a , b , and c are always assumed to

be free space unless otherwise specified. Excellent agreement is noted

between the two solutions for the TE case when = in Figs. 17 and

18 and when c = 5c in Figs. 19 and 20. A numerical check is made onb o

the solution, if region b is lossiess, by testing to see if conserva—

tion of power flow holds at the two aperture faces. Thus the real

parts of the Poynting vector flux at I’
1~ 

denoted by 
~~~~~~~ 

and F3, de—

noted by F’~3’ are computed . They are compared by the number AP defined

as

= 100 (P +P )/2 1 ~. (8—1)

which should be as small as possible. This number is computed readily

in the non—modal solution and is given, when appropriate, in the figure

captions of the computed examples. Cases for which the computation

(8—1) is not reliable is when the slit is cut off in the TM case and

the imaginary part of the Poynting vector flux is much greater than the

real par t .

Two TM cases of the previous example are shown in Figs. 21 and 22

where agreement between, the magnetic currents is again excellent. The

noticeable difference between the two solutions occurs in the electric

current at the ends of the illuminated aperture face F1. An analysis
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of the field near the edges following the procedure of Meixner [28]

shows th~at the magnetic current should approach zero with an infinite

slope r ight at the ends of F
1
. Also , the electric ci.rient should

- 
I become singular at these points. An explanation as to why the coin—

puted non—modal TM electric current doesn ’t behave as expected at

the ends of the aperture face lies in the fact that the edge behavior

of the magnetic current is not represented adequately by the tri-

angle expansion functions . They cons train the magnetic current to

approach zero linearly at the ends of the aperture. The modal compu—

tation of this electric current , however , always gives a zero value

of elect r ic curr ent at y = 0 and y = w because of the nature of the

modal expansion . This modal computation converges non—uniformly to

the electric current at these points.

To illustrate a more detailed behavior of the aperture fields ,

a smaller slit (w = O . 2A  , d = 0 .2 A ) is considered where the number
0 0

of unknowns is the same as in the previous example. In Figs. 23—26 ,

for the TE case, the agreement in the electric current from the two

solutions is still excellent . For the magnetic current , however, a

slight oscillation is present in both solutions, the greater vari-

ation being noticed in the non—modal results. For a slit of this

size , it is not expected from physical considerations that the true

solution would have any oscillatory behavior . It is thus concluded

that this anomaly is a characterist ic of the numerical solution even

though the numerical values f or AP are small. The TM cases for this

example are shown in Figs. 27—29 where the modal e lectr ic  current  was
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c)mputed at 50 points along each line F . of C. Results from both

of the solutions compare well except f or j’~ at each aperture face F1

and I’
3~ The oscillatory behavior in the electric current from the

modal solution is due to the triangular representation of the mag—

netic current which has a pulse representation of magnetic charge.

This results in a logarithmic singularity in the y component of

magnetic field at each break point of the triangles and hence

accounts for the difficulty in computing the electric currents on

F
1 
and F

3 
by parallel plate guide modes. The agreement between

electric currents on F
2 

and is quite good and the expected

behavior at the edges is observed . For the x component of magnetic

field , the modal series converges quite rapidly. The effects of

increasing the dielectric constant in region b until there is a

propagating TM mode are also noticed in Figs. 27—29.

The preceding results for slits of rectangular cross sections,

which have received extensive consideration in the literature , gives

one an idea of how these two different solutions compare for this

simple cross section. As a further check, the modal and non—modal

solutions for the slit cross section of Fig. 15 are compared . Here

we have a cross section composed of two rectangular regions which

may be solved readily by either method . For the TE case shown in

Figs. 30 and 31, excellent agreement is obtained for all quantities

computed . Slight oscillations are again noticed in the results for

the magnetic currents. Some loss is added. to the material filling

region b (cb 
= (l—j)c 0

) in Figs. 32 and 33 which corresponds to a
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conductivity of 0.017 siemens/meter. Agreement between the two

soluttons is again quite good . The TM results f or this example

are shown in Figs. 34—37 where the magnetic currents from the

two solutions are seen to agree quite closely. There is more

discrepancy between the electric currents where the

largest differences occur right at the corner of the cross

section on line To improve this, more expansion functions

are needed on F
2 
since the introduction of an edge there causes

tremendous changes in the fields close to the edge.

Allowing for a few discrepancies at some points on the

contour C, agreement between the computed quantities in the pre-

vious examples is, in general, quite good . In fact , as far as

the transmitted fields in region c are concerned , t’~ere is negli-

gible difference between the two solutions for a given problem .

Figures 38—41 show some plots of transmission coefficient versus

plane wave angle of incidence (as measured from the negative x—axis)

for some of the previously considered slits.

The primary advantage of the non—modal solution is that it

may be used to solve slits whose cross sections cannot be broken up

exactly into rectangular sub—regions. Figures i6a—h show some slits

of various cross sections, some of which are similar . Figures 42

and 43 show the effects on the radiation patterns in reg ion c if

the cross section is changed so that some of the conducting plane

pushes into the rectangular cross section. These perturbed cross
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sections are shown in Figs. 16b,c , and e. The overall effect is

to shift the patterns slightly upward in the TE case while almost

no effect is noticed in the TM case. If the rectangular cross

section is changed so that some of the conducting plane material

is carved out , thus making region b bigger , a much more noticeable

upward shifting of the pattern is noticed in Fig. 44. There is

again a negligible change in the TM slit patterns for those cases.
4

Lastly, Fig. 45 shows the patterns for the slits of Figs. 16d, f

and g when the plane wave is incident at an angle of 45°.
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Fig. 14. Slits of a rectangular cross section . Dimensions are in

units of A
0
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Fig . 15. Slit cross section made up of two tectangular regions.

Dimensions are in units of A
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Fig. 39. TE transmission coefficients vs. for rectangular
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8.2. Siit Impedance and Equivalent Circuit for TE Case

When the slit cross section is rectangular , several approximate

solutions for the transmission characteristics are readily available

after making suitable assumptions. The first cases considered are

.‘ when regions a, b, and c are filled with free space and the slit width

w is such that k w << 1. As discussed in Chapter 5, the transmission

characteristics :ay then be determined from a slit impedance for the

TE case, and a slit polarizability for the Th case. The TE case is

very important in electromagnetic shielding problems since there is

always a propagating mode in the waveguide region b. If the condi-

tion k w  << 1 is satisfied and d > w then the two assu mptions are made:

1) Each half space may be represented by a lumped

impedance.

2) Region b behaves like a uniform transmission line.

This suggests the equivalent circuit shown in Fig . 46. Regions a and c

I
l 

1
2

+ 

1a f ”\\~~~ 

+

V
1 

Z ‘sc Z a V 2

Fig. 46. Equivalent circuit model for rectangular slit when k0
w <<1.
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are identical and are represented by the lumped impedance Z
a 

which

is defined by
vi V2Z

a 
= = ( 8 — 2 )

a 2

The excitation, 
~~~~~~~~ 

is equal to the negative of the electric current

which would exist at if were completed by a perfect electric con—

ductor . This is a form of the equivalence principle used by

• Collin [30]. The voltages V
1 and V2 are obtained by integrating

the electric L~~eLd ~magnei ic currents) across ~he aperture faces

and r3 respectively. It is desired to find the slit impedance

defined by Eq. (5—28) which may be rewritten in terms of the equi— ‘~

valent circuit parameters as

• V
2z = - ~---— (8— 3)
sc

From transmission line theory , one may easily obtain

1 
2 (8-4)• ~o 2z cos kd + j(1+z )sin kd

where z = Z / ~ and n~, is the characteristic impedance of free space.

The circuit parameter Z
a is found by computing the impedance for an

infinite flange (d -
~ ‘°) when k w  << 1. If one assumes a constant

electric field in the aperture equal to unity [24, p. 1801, the re-

sult is

y k w  (8-5)

~o w[71 — 2j in
2e

where y 1.781 and e = 2.71828... Another formula, based on a static
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solution of the flange problem , is given by [31]

z A
0

Ti ykw (8-6)
° w[r r — 2 j  ln 

~~eT~ ~

For comparison purposes, one last formula is obtained which uses

4
the assumption that the electric field in the aperture is that

obtained for a slit in a zero thickness conducting plane [32] and

is given by

z A
—~~~~~ — 0

- 

ykw 
-

° wN — 2j in ~ 8~~~’

For k w  small enough, there is little difference between these

formulas.

The transmission coefficient may also be obtained from the

equivalent circuit by determining the power delivered to the load Z
a

at the distance d and dividing by the power delivered to the cir-

cuit by I when Z = fl . Thus one may obtain
Sc a o

4 2
T = ~ Iz i Re{l/Z } (8—8)

Some plots of Z/~0 and T versus a/A 0 are shown in Figs. 47—49

for rectangular slits of various widths. The solid curves repre-

sent computations from the equivalent circuit in Fig. 46 where Z is

determined from Eq. (8—7). Circles and triangles are used to mark

results obtained from the modal solution of the rectangular slit

computed for each value of w and d. Agreement is excellent for slits

whose widths are even as large as 0.2X0. For wider slits , the slit

impedance Z loses its usefulness since it can no longer accurately
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determine the transmitted fields.
I

It is interesting to note that , as w becomes smaller , the

transmission coefficient tends to a peak value when d is close to

a multiple of A /2. These peaks approach a value of l/w7r for small

w which can be shown from the equivalent circuit . This behavior is

predictable in tha t a resonance condition is achieved when the

reactance of Z , at the distance d , cancels that of Z at the source

Tsc Thus , ev:n though very little incident energy i:pinges upon

the slit for small w, the transmission coefficient may be quite large

for some thickness d when compared to the d = 0 case.
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Fig. 47. Slit impedance and transmission coefficient vs. d/X

f or w = .05X - Circles and triangles denote modal
0

results, solid lines denote equivalent circuit model.
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Fig. 48. Slit impedance and transmission coefficient vs. d/A
0

for w = 0.1A . Circles and triangles denote modal
0

results, solid lines denote equivalent circuit model.
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Fig. 49. Slit impedance and transmission coefficient vs. d/X

for w = 0.2X . Circles and triangles denote modal
0

results, solid lines denote equivalent circuit model.
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V
8.3. Plane Wave Approximate Solution

For wider rectangular slits, the plane wave approximation of

Chapter 7 is useful. Plots of transmission coefficient versus plane

wave angle of incidence are computed using this approximation (denot-

ed by solid lines) and using the modal solution (denoted by circles)

using a sufficient number of unknowns on each aperture face. A

relatively narrow TE slit (w = l.4X ) is shown in Figs. 50a and b

where increasing the thickness from 0.2A to 0.4X improves the plane

wave solution somewhat. Even closer agreement is noted as the width

is increased to 3.OX as seen in Figs. SOc and d. When the slit is

wide, the plane wave approximation is better justified from the

analysis given in Chapter 7. This is clearly seen in Figs. Sla and b

where C = 30C so that the slit is about 5 1 times its free spaceb o 2

electrical width. A TM slit of width w l.4X is shown in Figs.
0

52a and b where it is again observed that increasing the thickness

d improves the plane wave solution. The wider slit w = 3X is shown

in Figs. 52c and d for the TM case. The effects of adding loss to the

material filling region b are shown in Figs. 53 and 54.
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Fig. 51. TE transmission coefficients vs. for L
b

a) w = l .4A , d = 0.2X ; b) w = l.4X , d = O.4A .

Circles denote modal solution and solid lines denote

plane wave approximation.
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ANGL E OF INCIDENCE
Fig. 53. TE transmission coefficient vs. for w l.4~d = O.4X , C

h 
= (1—j)C . 

0

.5 1 I 4 —I I I I I -

ANGL E OF INCIDENCE

Fig. 54. TE transmission coefficient vs. for w = O.7X ,

d = O . 4 A , C
b 

= ( 1— j ) c .
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• Chapter 9

CONCLUSIONS AND RECOMMENDATIONS

A non—modal formulation has been developed for studying elec-

tromagnetic transmission through a slit of arbitrary cross section

cut in a perfectly conducting ground plane of finite thickness. The

term “arbitrary cross section” means that the two slit faces, repre—

sented by lines and r3, are coincident with the planes x = 0 and

x = d , respectively, and that the rest of the cross section, lines

F2 
and F

4
, may be specified in an arbitrary manner . After some modi—

fication, which is not undertaken in this report , the formulation can

also be applied to cases where the material filling the slit , and

hence lines 1’
1 
and r3, may protrude out into the half space regions

a and c.

A modal solution is presented to treat slits with a cross

section which may be represented by a chain of two—dimensional rec-

tangular cavities which are coupled to each other by an aperture .

This chain coupling approach yields a block tn —diagonal matrix which

allows special computat ional considerations. In dealing with a cross

section composed of more than one rectangular sub—region, the same

number of parallel plate guide modes is taken in each sub—region to

compute the fields. This number is more or less arbitrarily picked

while checking to see that the real power flow across each aper ture

face is essentially the same.

The above two formulations, which are also applicable when the

material filling the slit is lossy, are compared to one another in
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various examples. The advantage of the non—modal solution lies in

the arbitrary nature of the specification of the slit cross section

whereas the modal solution may be used when the material filling

the slit has certain types of inhomogeneities. The computational

effort is usually greater in the non—modal solution, especially as

the slit cross secton becomes larger . The convergence of the numeri—
4

cal solutions is only investigated in the sense that the mean diff en—

ence between the two solutions is observed to decrease as the number

of unknowns is increased .

A brief exposition of some approximate solutions has also been

presented. It is well known that a small hole in a conducting plane

may be represented in terms of an electric and magnetic dipole moment .

For the two—dimensional slit , the TE case is of more importance than

the TM case, because there is then always a propagating mode in the

parallel plate cross section no matter how small the width. Here, a

slit impedance is defined from which one may compute the trans—

mission characteristics of the slit. Next, an equivalent circuit is

postulated , based on a transmission line model, in terms of the

aperture impedance of an infinite flange. It is found that this

equivalent circuit accurately models the slit for widths as large as

0.2 wavelengths. As the slit width becomes very small , the trans-

mission coefficient becomes very large for conducting planes whose

thickness corresponds to the distances at which the equivalent circuit

resonates. This circuit model , obtained for slits of a rectangular

cross section , could be extended to more complicated cross sections

I
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by using results from waveguide junction theory.

For slits whose cross section is again rectangular but whose

widths are large with respect to the wavelength in the material

filler, a so-called plane wave approximation can be used. This

greatly simplifies the block tn —diagonal matrix which arises in

q the modal solution and allows very rapid computation. It is found

y that this approximation yields accurate results when k
b
w >> 1 and

r is slightly better in the TE case. This approximate solution could 
•

— . . . . - a  • S ~~
• also be applied to slits which are filled with layers of dense

Three computer programs have been written which implement the

non—modal, modal , and approximate solutions discussed in this report.

They are listed and documented in [34 1.
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Appendix

NUMERICAL APPROXIMATION OF INTEGRALS

In Chapters 3 and 4, several integrals appear which must be

computed numerically. These integrals are defined on straight line

segments in the x—y platte. The }lankel functions H~
2
~ and H~

2
~ are

encountered in the integrands and , since they are computed using

polynomial approximations [29], it is natural to choose a quadra—

tune formula which gives the highest degree of precision for jute—

grating polynomials. Thus tl~e ~~~~~~~~~~~~~~~~~ qtia~ratul%
4 *  ~ 

- — 
~
. - 4

• - ~~ 4 .. i - S 4 ~•
formulae [33] are used. With reference to Fig. 5, consider the

integral
tn+1

= L F(lr — r ’~ )dt’ (A— i)

where r is a field point not on AC , r ’ is a source point on AC , and

F is a well defined function on AC - Rewriting r ’ asn —

• r ’ = R  + t’~• 
- -n -n

• where R is a vector from the origin to the midpoint of AC one may
-f l  TI

rewrite (A—i) as

AC AC
i = —s I F(~r — __.a u’~ — R ))du ’ (A—2)• n 2 j  

— 2 —n —n
—l

• 
AC

where t’ = —
~~~~~ u ’. This is now in the frm to approximate by

AC AC
I 2~ 

__~a 
~~ A~~~F(I r 

- 
__a 

~~~~~~~~~ - R I) (A-3)n 2 
~
=1 ~ 

— 2 
~ 

—ii —n
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where ~~~ are the roots of the Legendre polynomial of degree Q

P
Q
(u~~
)) = 0

• and ~~~ are the weighting coefficients determined by

(Q) _ 2
A . - 

[1 - (u~~~~
2][P~ (u~~~)) 2

Tables of u~~~ and ~~~ for various values of Q are readily available

[33, p. 337). The foregoing rule can be applied in succession to

multiple integrals. For example, if In 
is well defined on AC , then

we have the formula

~m+l 
I dt 

A C A C 

~ A(® ~~~ F(I—~
- ~~~~~~~ 

~

tm 
~ i=l 1=1 ~ 

AC 

2 i —in

— a uc~~ ~ + R I) (A—4)
2 j —n —inn
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